SICP-1.2.1节练习
练习 1.9 - 1.10
练习 1.9:
Each of the following two procedures defines a method for adding two positive integers in terms of the procedures inc, which increments its argument by 1, and dec, which decrements its argument by 1. (define (+ a b) (if (= a 0) b (inc (+ (dec a) b)))) (define (+ a b) (if (= a 0) b (+ (dec a) (inc b)))) Using the substitution model, illustrate the process generated by each procedure in evaluating (+ 4 5). Are these processes iterative or recursive?
我的解答:
一、用第一个过程的计算过程: (+ 4 5) (inc (+ 3 5)) (inc (inc (+ 2 5))) (inc (inc (inc (+ 1 5)))) (inc (inc (inc (inc (+ 0 5))))) (inc (inc (inc (inc 5)))) (inc (inc (inc 6))) (inc (inc 7)) (inc 8) 9 二、用第二个过程的计算过程: (+ 4 5) (+ 3 6) (+ 2 7) (+ 1 8) (+ 0 9) 9 从上面可以看出:第一个过程为递归计算过程,第二个过程为迭代计算过程。
练习 1.10:
The following procedure computes a mathematical function called Ackermann's function. (define (A x y) (cond ((= y 0) 0) ((= x 0) (* 2 y)) ((= y 1) 2) (else (A (- x 1) (A x (- y 1)))))) What are the values of the following expressions? (A 1 10) (A 2 4) (A 3 3) Consider the following procedures, where A is the procedure defined above: (define (f n) (A 0 n)) (define (g n) (A 1 n)) (define (h n) (A 2 n)) (define (k n) (* 5 n n)) Give concise mathematical definitions for the functions computed by the procedures f, g, and h for positive integer values of n. For example, (k n) computes 5n^2.
我的解答:
scheme@(guile-user)> (define (A x y) (cond ((= y 0) 0) ((= x 0) (* 2 y)) ((= y 1) 2) (else (A (- x 1) (A x (- y 1)))))) scheme@(guile-user)> (A 1 10) 1024 scheme@(guile-user)> (A 2 4) 65536 scheme@(guile-user)> (A 3 3) 65536 f(n) = 2n g(n) = 2^n |0, n=0 h(n) = |2, n=1 |2^{h(n-1)}, otherwise